Maars of Kamchatka (Russian Far East): the first data

Belousov Alexander, Belousova Marina

Institute of Volcanology & Seismology, Petropavlovsk-Kamchatsky; Institute of Marine Geology & Geophysics, Yuzhno-Sakhalinsk

Kamchatka very intensive subductionrelated volcanism in Pleistocene - Holocene

Distribution of Pleistocene –Holocene volcanic rocks (red areas)

Kamchatka giant stratovolcanoes

and extensive areas covered by monogenetic volcanoes

Goals

 To estimate the role of water-magma interaction in formation of monogenetic volcanoes of Kamchatka.

Sec. Ca

• To distinguish factors determining location of maar-forming eruptions in Kamchatka.

Maps and aerial images were used to identify the maars

Totally 19 maars have been identified in Kamchatka

90

Kenenin Maar – the youngest in Kamchatka Basalt; crater 1.6 km; 1100 BP

Dal'neye Lake Maar Basaltic andesite; crater1.2 km; 3300 BP

Valentina Maar – one of the oldest in Kamchatka Basalt; crater 0.8 km; Late Pleistocene

Chasha Maar Rhyolite; crater1.2 km; 4600 BP

The all all

Krokur Maar Basalt; crater 1.3 km; 4900 BP

Maars of Kamchatka

Name	Age	Crater	Composition
	(Ka)	(km)	
Nachikinsky	10	1.6	Basalt
Kenenin	1.1	1.6	Basalt
Krokur	4.9	1.3	Basalt
Dal'neye Lake	3.3	1.2	Basaltic andesite
Valentina	>10	0.8	Basalt
Sukhoye Ozero	>10	2.0	Basalt
Koldobishe	1.2	0.3	Basalt
Chasha	4.6	1.2	Rhyolite
Barany	1.5	1.4	Rhyolite
Temny	8.0	0.7	Basalt
Khetik		0.3	Basalt ?
Khodutkinsky	2.8	0.8	Rhyolite-dacite
Krestovka		0.8	Basalt ?
Krugloe	9?	0.8	Basalt ?
Ilinsky		0.3	Andesite ?

Sukhoye Ozero

Fallout and base surge deposits. Commonly poorly sorted – wet eruption clouds.

Rhythmic layering – pulsatory eruptive style

Enriched by accidental clasts – excavation of deep craters into preexisting rocks

High average density and blocky morphology of pyroclasts – fragmentation of quenched magma

Cauliflower bomb. Dal'neye Lake Maar

Variable density of pyroclasts – vesiculation of magma was arrested by quenching

Dal'neye Lake Maar Number of clasts Chasha Maar Vesicularity, %

Transition from dense phreatomagmatic deposits to scoria – exhausting of water in aquifer in the eruption course

Maar deposits: clear evidence of water-magma interaction.

Where do maars "like" to be formed?

all E.F.

Common formation of maars on lowermost parts of eruptive fissures

Common location of maars near big lakes

Maars comprise less than 1% of monogenetic volcanoes of Kamchatka. Why are they so rare?

The same that the same

Distribution of maars Precipitation rate

Highest concentration of maars is in the areas with highest precipitation rates (>1200 mm/year)

Conclusions

•There are at least 19 maars in Kamchatka. •Maars are relatively rare (<1% of monogenetic volcanoes of Kamchatka). •Deposits of the maars show clear evidences of water-magma interaction. •Maars are located in the wettest areas (near big lakes or see, lowermost parts of eruptive fissures). •There is a link between annual precipitation rate and concentration of maars in Kamchatka.