What happens inside a blast-generated pyroclastic density current as it spreads over terrain: data from the NW sector of the 1980 Mount St. Helens blast

Alexander Belousov ¹, Marina Belousova ¹, Amanda Clarke ², Barry Voight ³, Kim Genereau ², Kirsten Chojnicki ², Brittany Brand ²

¹ Institute of Volcanology and Seismology, Petropavlovsk, Russia
² Arizona State University, Tempe, USA
³ Penn State University, University Park, USA
Goals of the study

- To obtain detailed quantitative info about changes of parameters of the blast deposit with distance from the source.
- To estimate intensity of turbulence and concentration of particles inside the blast-generated density current.
- To clarify depositional mechanisms of the blast.

May 18, 1980
Studied parameters of the blast deposit

- Stratigraphy
- Grain size
- Components
 (juvenile/accidental)
- Density of rock clasts
Locations of the studied outcrops

- Distal-type stratigraphy
- Proximal-type stratigraphy
Stratigraphy

Proximal

Distance from crater, km

Thickness, cm

Distal

Total thickness of blast deposits

Soil

Soil

A

A+B

C

B

A

C

A+B

Soil

Soil
Grain-size parameters of the 1980 blast deposit

Proximal

Distal
Grain-size parameters of the 1980 blast deposit

In proximal zone the deposit is very poorly sorted and coarse, but gradually becomes better sorted and finer-grained with distance. In distal zone grain-size parameters do not change notably with distance.
How high was the concentration of particles in the blast-generated PDC?

Probably not very high!

10 km from the source, 1.5 m above the ground.
Component composition of the blast deposit

sample: 50 clasts
(16 – 32 mm)

Dense and vesicular variety of juvenile material
Density of rock clasts

Each sample: 50 clasts; 16 – 32 mm.
Method: separation in heavy liquids

Accidental clasts

- proximal zone
- distal zone

Juvenile clasts

- proximal zone
- distal zone

Proximal zone (23 samples)

Distal zone (13 samples)
Average density of juvenile clasts in layers of proximal zone

Distance from the crater, km

Average density, g/cm²
Grain-size and thickness of the 1980 MSH and 1956 Bezymianny blast deposits

MSH

BEZY

Layers:
- A
- B
- C
- Distal zone

Thickness, cm

Distance from crater, km

Thickness, m

Distance from crater, km
Initial population of pyroclastic particles in the PDC was very heterogeneous. The PDC was turbulent, but developed a highly concentrated basal zone, where turbulence was suppressed. With distance: rapid decrease in both grain-size range and average density of clasts. Concentration of particles was gradually decreasing, but continued to be relatively high to suppress turbulence in the base of the PDC throughout the range of proximal zone. Depositional mechanism: suspended load fallout.
Sharp change of depositional regime at ~ 15 km from the source! Clast population in the blast cloud became rather homogeneous. The PDC became very inflated and turbulent throughout the total thickness. Depositional mechanism: traction sedimentation. Grain size remained nearly constant with distance. Average density and concentration of particles were rapidly decreasing until the current became buoyant.

Distal zone