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The Pliocene–Pleistocene northern Taiwan volcanic zone (NTVZ) is located within a trench-arc–back-arc basin and oblique
arc–continent collision zone. Consequently the origin and tectonic setting of the andesitic rocks within the NTVZ and their
relation to other circum-Pacific volcanic island-arc systems is uncertain. Rocks collected from the Tatun volcanic group
(TTVG) include basaltic to andesitic rocks. The basalt is compositionally similar to within-plate continental tholeiites
whereas the basaltic andesite and andesite are calc-alkaline; however, all rocks show a distinct depletion of Nb-Ta in their
normalized incompatible element diagrams. The Sr-Nd isotope compositions of the TTVG rocks are very similar and have a
relatively restricted range (i.e. ISr = 0.70417–0.70488; εNd(T) = +2.2 to +3.1), suggesting that they are derived directly or
indirectly from the same mantle source. The basalts are likely derived by mixing between melts from the asthenosphere and
a subduction-modified subcontinental lithospheric mantle (SCLM) source, whereas the basaltic andesites may be derived by
partial melting of pyroxenitic lenses within the SCLM and mixing with asthenospheric melts. MELTS modelling using a
starting composition equal to the most primitive basaltic andesite, shallow-pressure (i.e. ≤1 kbar), oxidizing conditions (i.e.
FMQ +1), and near water saturation will produce compositions similar to the andesites observed in this study. Petrological
modelling and the Sr-Nd isotope results indicate that the volcanic rocks from TTVG, including the spatially and temporally
associated Kuanyinshan volcanic rocks, are derived from the same mantle source and that the andesites are the product of
fractional crystallization of a parental magma similar in composition to the basaltic andesites. Furthermore, our results
indicate that, in some cases, calc-alkaline andesites may be generated by crystal fractionation of mafic magmas derived in an
extensional back-arc setting rather than a subduction zone setting.
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Introduction

Calc-alkaline andesite is a common volcanic rock found at
ocean–continent and ocean–ocean convergent plate tec-
tonic settings and is directly attributed to petrological
processes that are inherent at subduction zone settings
(Boettcher 1973; Miyashiro 1974; Ringwood 1974; Gill
1981; Davies and Stevenson 1992; Sisson and Grove
1993; Ulmer 2001; Poli and Schmidt 2002; Ernst 2010).
The formation of andesitic magmas, including high-Mg
andesite, may be related to either direct partial melting
from a pyroxenitic mantle or to partial melting and mixing
between melts derived from subducted oceanic crust and
the overlying hydrated mantle wedge, with possible con-
tributions from the crust during eruption (Arculus 1994;
Kelemen 1995; Rapp et al. 1999; Shinjo 1999; Ulmer
2001; Poli and Schmidt 2002; Rudnick and Gao 2003;
Zellmer et al. 2005; Kelemen and Yogodzinski 2007;
Straub et al. 2008, 2011; Tatsumi et al. 2008; Chiaradia
et al. 2011; Till et al. 2012). Therefore, the identification
of calc-alkaline andesite in the geological record is used as
evidence for the existence of ancient arc settings (Sheth

et al. 2002). However, andesitic rocks are also found
within extensional settings such as large igneous provinces
and Archaean and Proterozoic greenstone belts, and may
also be generated by fractional crystallization at shallow
crustal levels or magma mixing; thus the identification of
ancient calc-alkaline silicic rocks may not necessarily be
indicative of a volcanic arc setting but rather a tensional
(i.e. back-arc or continent rift) setting (Hawkesworth et al.
1995; Shinjo 1999; Sheth et al. 2002; Bryan 2007;
Shellnutt and Zellmer 2010; Leclerc et al. 2011).

The northern Taiwan volcanic zone (NTVZ) is situated
in a complicated tectonic setting involving interaction
between the margin of East Eurasia and the Philippine
Sea plate. The convergence of plates around the Ryukyu
arc has created an instance where oblique arc–continental
collision is occurring at the same site where a trench-arc–
back-arc basin is forming (Suppe 1984; Teng 1990, 1996).
Due to the nature of subduction beneath the Ryukyu arc
and the oblique arc–continent collision, it is difficult to
ascribe the appropriate tectonic setting to the Tatun volca-
nic group (TTVG) system, which is located at the northern
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tip of Taiwan in the western portion of the NTVZ.
Previous studies have suggested that the Tatun system
may be subduction-related due to the identification of
calc-alkaline andesitic rocks, whereas others suggest that
it is related to back-arc rifting of the Okinawa trough
(Chen 1975, 1978, 1990; Lo 1982; Juang 1993; Chung
et al. 1995; Teng 1996; Chen and Teng 1997; Chen et al.
1999; Wang et al. 1999, 2004). The presence of basalts,
which are compositionally similar to within-plate conti-
nental tholeiites, casts doubt on the volcanic arc interpre-
tation (Chen et al. 1999; Wang et al. 1999, 2004).

Because of the complicated geological setting of the
eastern NTVZ, the precise tectonic origin (i.e. convergent
vs. divergent plate boundary) of the TTVG rocks remains
uncertain but understanding the origin of the andesitic
rocks and their relationship to the tholeiitic rocks may
enable one to constrain the likely tectonic setting. In this
study we present new major and trace elemental data and
whole-rock Sr-Nd isotopes of the andesitic rocks from the
TTVG of the northern Taiwan volcanic zone. Together
with detailed geological observations and petrological
modelling, we attempt to determine the likely origin of
the andesitic rocks in order to provide insight into the
eruptive tectonic setting of the TTVG.

Background geology

Taiwan is an active mountain belt created by the oblique
collision between the northern Luzon arc and the Asian
continent (Figure 1) (c.f. Teng 1990). Despite ongoing
plate convergence in central and southern Taiwan, exten-
sional collapse has occurred in the northern part of the
mountain belt since the Pliocene–Pleistocene. Accordingly,
Teng (1996) proposed a model for orogenic evolution of
northern Taiwan, from mountain building by collision to
subsequent extensional collapse, lasting only a few million
years. The Quaternary northern Taiwan volcanic zone
(NTVZ) comprises two major on-land volcanic fields, the
Tatun and Keelung Volcano groups (TTVG and KLVG),
two isolated volcanoes (Kuanyinshan (KYS) and
Tsaolingshan) in the southwest, and several offshore volca-
noes (Sekibisho, Kobisho, Pengchiayu, and Mienhuayu) in
the northeast (Wang et al. 1999). Radiometric age dating
shows that the NTVZ volcanism commenced at ~2.8–
2.6 Ma and lasted throughout the Quaternary. The age
dates suggest that the earliest eruptions occurred in the
Sekibisho and Mienhuayu islets and the TTVG around
2.8–2.6 Ma, with the youngest ages around 0.2 Ma in
most of the volcanic fields. In some localities, however,
the volcanic ages might be younger than 0.2 Ma as dating
results are close to or even smaller than the limit of the
dating methods (Wang et al. 2004 and references therein).
The NTVZ volcanic rocks consist dominantly of andesites
with calc-alkaline geochemical characteristics, similar to
those commonly observed in convergent-margin lavas

(Gill 1981; Belousov et al. 2010). Thus, they are regarded
as the westernmost part of the Ryukyu volcanic arc (Chen
1990; Juang, 1993; Chung et al. 1995; Teng 1996). The
conventional view was first questioned by Chen and Teng
(1997), who suggested an extensional rather than a subduc-
tion regime for magma generation. To accommodate avail-
able geophysical and geological evidence, Wang et al.
(1999) proposed that the NTVZ resulted from post-colli-
sional extension related to the late Pliocene orogenic col-
lapse of the northern Taiwan mountain belt (Teng 1996).
The extension may also account for the reactivation of the
opening of the Okinawa trough that commenced during the
middle Miocene (Sibuet et al. 1995) but became inactive
after the arc–continent collision in Taiwan. Reactivated
rifting in the Okinawa trough began propagating to the
southwest from ~1.5 Ma, with accompanying development
of the westernmost part of the Ryukyu subduction system
towards Taiwan (Chung et al. 2000).

Twelve samples (Table 1 and Figure 2), representing
the youngest volcanic rocks erupted by the TTVG, were
collected within the limits of the E–W volcanic ridge of
the group from volcanic edifices that retained their pri-
mary volcanic landforms (i.e. minimal erosion) (Belousov
et al. 2010). Notably older volcanic rocks of the SW–NE
ridge of the TTVG are not considered in this paper but
were discussed by Wang et al. (2004). Precise ages of the
analysed rocks are not known, but the available 40Ar/39Ar
age determinations of the sampled volcanoes suggest that
these rocks are no older than ~300,000 years (Song et al.
2000a, 2000b; Chen et al. 2003). Radiometric 14C dating
of the youngest pyroclastic deposits of the area indicates
that the final eruptions of the TTVG occurred at 23–13 ka,
and possibly as late as 6000 BP (Belousov et al. 2010;
Chen et al. 2010). Therefore it is conceivable that some of
the analysed samples may have erupted during the early
Holocene.

Ten of the studied samples represent lavas of the
TTVG. Eight of these (166, T-223, 223a, 227, 229, 230,
249, 309) were collected from lava bodies having a coher-
ent original shape clearly expressed in modern topography
and, thus their source volcanoes are known. Two samples
(210, 224) were collected from small outcrops and their
source volcanoes are not well established. Most of the
sampled flows were thick (tens to hundreds of metres),
blocky lavas (they were very viscous when erupted); one
sample (166) was collected from the steep-sided Shamao
lava dome – it represents the most viscous variety of
TTVG lavas; and one sample (309) represents a thin (1–
2 m) flow of relatively fluid ʻaʻā lava. Two samples (160,
190) represent juvenile rocks (blocks) from block-and-ash
pyroclastic flows probably formed simultaneously with
deposition of the youngest lava flows of Cising volcano.
Stratigraphic relations of these pyroclastic flows indicate
that these samples represent the youngest volcanic rocks
of the TTVG (Belousov et al. 2010; Chen et al. 2010).
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Figure 1. Location and regional tectonic map (middle) of the northern Taiwan volcanic zone (NTVZ) in relation to the Eurasian and
Philippine Sea plates (modified from Wang et al. 2004). The NTVZ is currently located ~200 km above the Wadti–Benioff zone. The
stippled area is the basement of the Taiwan Orogen. The upper inset shows the bathymetry and detailed locations of the various volcanic
edifies of the NTVZ. The 100 km contour is the surface projection of the depth to the Wadati-Benioff zone. The lower inset shows the
regional tectonic setting of Taiwan. OT, Okinawa Trough, RT, Ryukyu trench.

Table 1. Sample location and rock types of the Tatun volcanic group.

Point Volcano Latitude Longitude Deposit Composition

160 Cising 25° 9ʹ26.60″N 121°34ʹ1.20″E Pf of Cising Andesite
166 Shamao 25° 8ʹ44.77″N 121°32ʹ52.64″E Lava dome Andesite
190 Cising 25° 8ʹ52.00″N 121°32ʹ58.00″E PF of Cising Andesite
210 Siaocao 25° 8ʹ26.90″N 121°32ʹ31.00″E Blocky lava flow basaltic andesite
223 Wanli 25°10ʹ46.48″N 121°40ʹ26.58″E Blocky lava flow basaltic andesite
224 Wanli 25° 9ʹ55.50″N 121°40ʹ17.00″E Blocky lava flow basaltic andesite
227 Huangzuei 25°11ʹ20.50″N 121°36ʹ47.20″E Blocky lava flow basaltic andesite
229 Huangzuei 25°11ʹ55.80″N 121°35ʹ49.50″E Blocky lava flow basaltic andesite
230 Huangzuei 25°11ʹ30.30″N 121°36ʹ25.00″E Blocky lava flow basaltic andesite
249 Siaocao 25° 6ʹ22.62″N 121°32ʹ9.16″E Blocky lava flow basaltic andesite
309 Hunglu 25°11ʹ49.30″N 121°30ʹ34.20″E ʻaʻā lava flow basalt

Note: Pf, pyroclastic flow.
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Petrography

The basalt sample (309) from Hunglu is fresh and con-
sists of phenocrysts of olivine (≤5% vol.%), clino-
pyroxene (15–20 vol.%), and plagioclase (25–30 vol.%)
within a fine-grained groundmass (40–50 vol.%). The
rounded olivine crystals vary in size from 0.1 to 1.0 mm
and tend to form agglomerates. The clinopyroxene crystals
are typically euhedral to subhedral and can be up to 2 mm
in size. The plagioclase crystals are euhdral but have
variable shapes ranging from tabular to blocky. The major-
ity of the basalt is a fine- to very fine-grained groundmass,
some of which is composed of plagioclase and clinopyr-
oxene whereas the remainder cannot be readily identified
under the microscope. There is a small portion of opaque
minerals identified as Fe-Ti oxides (i.e. <5 vol.%).

The basaltic andesites comprise two groups. The
first group (i.e. 229, 230, 249) consists of phenocrysts
(length 0.1–3.0 mm length) of olivine (<5 vol.%), pyr-
oxene (~10 vol.%, mostly clinopyroxene), and plagio-
clase (30–40 vol.%). A fine- to very fine-grained
groundmass comprises ~50–60 vol.%. The olivine crys-
tals are rounded in shape whereas the pyroxenes tend to
be euhedral. The plagioclase crystals are euhedral with
shapes aligned with the 010, 110, and 001 crystal faces
and show chemical zonation. The only minerals that can
be identified in the groundmass are plagioclase, pyrox-
ene, and a small amount (i.e. <2 vol.%) of euhedral to
anhedral Fe-Ti oxides. The second group of basaltic
andesites (223, 223a, 224) is not as fresh and contains
pyroxene (~5 vol.%), plagioclase (~25 vol.%), and
amphibole (25 vol.%) within a very fine-grained
groundmass (~40 vol.%). The pyroxene is euhedral to
anhedral, with some crystals altering to amphibole. The

original plagioclase crystals show chemical zonation and
are typically euhedral but in many cases are breaking
down to clay minerals. There are two different amphi-
bole crystals in the rock, both euhedral to anhedral, but
one is distinctly dark brown to tan in plane polarized
light whereas the other is clear and has a low to mod-
erate relief. The dark brown amphibole may be oxy-
hornblende whereas the clear amphibole may be
cummingtonite. The mineralogy of the matrix cannot
be reliably identified. It appears that the second groups
of basaltic andesites have a more evolved mineral
assemblage and seem to have experienced magmatic
hydrothermal alteration.

The andesites (160, 166, 190) are relatively fresh and
fall within the region attributed to the hornblende two-
pyroxene (Lo 1982). The andesites contain phenocrysts
of pyroxene (~15 vol.%, mostly clinopyroxene), plagio-
clase (~30 vol.%), and hornblende (10–15 vol.%) within
a fine-grained to very fine-grained matrix (~40–50 vol.
%). The pyroxene crystals, both clinopyroxene and
orthopyroxene, are euhedral to anhedral. Some crystals
are altering to amphibole. The plagioclase crystals are
euhedral to subhedral with shapes similar to those
observed in the basaltic andesites. In some cases the
plagioclase crystals are altering to clay minerals. The
hornblende crystals are euhedral to anhedral and show
variably altered texture. The volume percentage of horn-
blende can vary considerably within the rock. Plagioclase
is the only silicate mineral that can be identified within
the matrix but there are also some Fe-Ti oxides present.
Lo (1982) reported that some andesites from the southern
margin of the E–W ridge area have been altered by
volcanic degassing (i.e. H2O and SO2).
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Figure 2. Sketch map of Tatun volcanic group, northern Taiwan, showing points where the analysed samples were collected. Locations
of the main volcanic ridges, volcanoes, lava flows, and collapse scars are indicated. Transliteration of main topographic names from
Chinese into English can be found in Table 1 (Belousov et al. 2010).
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Analytical methods

Wavelength dispersive x-ray fluorescence spectrometry
(WD-XRFS)

The samples were cut into small pieces using a diamond-
bonded steel saw and were then crushed in a steel jaw
crusher. The crusher was extensively cleaned after each
sample with de-ionized water. The crushed samples were
pulverized in an agate mill until a suitable particle size was
obtained. The samples were heated to temperatures of
~110 and ~900°C to determine loss on ignition (LOI).
Lithium metaborate was added to the oxidized samples
and fused to produce a glass disc using a Claisse M4
fluxer. The major oxide concentrations were determined
by WD-XRFS using a PANalytical Axios mAX spectro-
meter at the National Taiwan Normal University in Taipei.
The long-term precision for SDC-1 standard reference
material on 30 analyses is better than ± 0.5% for all
elements except MgO, Na2O, and P2O5, which is better
than ±2% (Table 2). The long-term precision for BIR-1
standard reference material on 39 analyses is better than
±0.5% for all elements except Na2O and K2O, which
is ±2% (Table 2).

ICP-MS trace element geochemistry

Whole-rock trace elemental analysis was conducted at
Activation Laboratories, Ancaster, Ontario, Canada using
the total digestion ICP method. A 0.25 g sample is
digested with four acids beginning with hydrofluoric, fol-
lowed by a mixture of nitric and perchloric acids. This is
then heated using precise programmer-controlled heating
in several ramping and holding cycles, which takes the
samples to incipient dryness. After attaining incipient dry-
ness, samples are brought back into solution using aqua
regia. With this digestion, certain phases may be only
partially solubilized; these phases include zircon, mona-
zite, sphene, gahnite, chromite, cassiterite, rutile, and bar-
ite. The samples are then analysed using an Agilent 735
ICP. Quality control, for which the digestion is 14% for
each batch, 5 method reagent blanks, 10 in-house controls,
10 sample duplicates, and 8 certified reference materials
(Table 2). An additional 13% quality control is performed
as part of the instrumental analysis to ensure quality in the
areas of instrumental drift. The total digestion method as
described above can be found on the Activation Labs
website and their literature.

Thermal ionization mass spectrometry

Approximately 75–100 mg of whole-rock powder was
dissolved using a mixture of HF-HClO4 in a Teflon beaker
at ~100°C. In many cases, the same procedures were
repeated to ensure the total dissolution of the sample.
Strontium and rare earth elements (REEs) were separated

using polyethylene columns with a 5 ml resin bed of AG
50W-X8, 200–400 mesh. Neodymium was separated from
other REEs using polyethylene columns with an Ln resin
as a cation exchange medium. Strontium was loaded on a
single Ta-filament with H3PO4 and Nd was loaded with
H3PO4 on a Re-double-filament. 143Nd/144Nd ratios were
normalized to 146Nd/144Nd = 0.7219 and 87Sr/86Sr ratios to
86Sr/88Sr = 0.1194. Sr isotopic ratios were measured using
a Finnigan MAT-262 thermal ionization mass spectrometer
(TIMS), while Nd isotopic ratios were measured using a
Finnigan Triton TIMS in the Mass Spectrometry
Laboratory, Institute of Earth Sciences, Academia Sinica,
Taipei. The 2σm values for all samples are less than or
equal to 0.000017 for 87Sr/86Sr and less than or equal to
0.000006 for 143Nd/144Nd. The measured isotope ratio
during analyses for JMC Nd standard is
0.511813 ± 0.000010 (2σm) and for NBS987-Sr is
0.710248 ± 0.00001 (2σm). The results can be found in
Table 3.

Results

Major and trace elemental data

The major element data recalculated on an anhydrous
basis for the samples collected in this study indicate
there are three rock types: basalt, basaltic andesite, and
andesite (Figure 3a). The basalt is compositionally similar
to high-Al (i.e. Al2O3 >16.5 wt% and MgO <7 wt%)
tholeiites, has a Mg# of 55.5, and the highest TiO2

(TiO2 = 1.5 wt%) content of all rocks in the study. The
basaltic andesites are calc-alkaline and have a relatively
wide compositional range (SiO2 = 54.2–56.9 wt%,
Al2O3 = 17.1–21.3 wt%, Fe2O3t = 7.5–8.6 wt%,
MgO = 3.2–5.4 wt%, CaO = 4.9–9.2 wt%, Na2O = 1.9–
2.9 wt%, and K2O = 1.1–1.9 wt%). The three andesite
samples are calc-alkaline, medium K2O, and have Mg#
values between 47 and 48 (Figure 3b, c).

The concentration of many transition metals and Ga
are typically the highest in the basalt (i.e. Sc = 40 ppm,
Co = 29.8, Ni = 27 ppm, Cu = 175 ppm, Ta = 0.7 ppm,
Hf = 2.2 ppm, Zn = 88.8 ppm, Y = 20.7 ppm,
Zr = 76 ppm, Ga = 19.6 ppm) and decrease in the basaltic
andesites and andesites, although the basaltic andesites
have the highest V (i.e. V = 210 to 270 ppm) and Cr
(i.e. Cr = 13–96 ppm). The Rb, Sr, and Ba contents are not
significantly different between all rock types. The primi-
tive mantle normalized trace element diagrams of the
rocks show similar patterns, with distinct depletions of
Nb-Ta and Ti and enrichment of Cs and other large-ion
lithophile elements (LILEs) such as Rb and Ba, although
Nb-Ta and Ti depletion is less pronounced in the basalt
samples (Figure 4a, c, e). There are few discernible differ-
ences between the basaltic andesites and andesites as their
chondrite normalized REE patterns are light REE (LREE)

1160 J.G. Shellnutt et al.
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Table 2. Major and trace elemental data of rocks from the Tatun volcanic group.

Sample 166 190 T-160 227 230 229 224 223a T-223 T-210 249 T-309

SiO2 (wt%) 59.71 59.58 57.72 56.17 54.07 56.12 56.44 49.88 52.04 56.53 56.91 51.27
TiO2 0.52 0.52 0.51 0.56 0.60 0.54 0.55 0.59 0.59 0.64 0.61 1.51
Al2O3 18.81 18.84 18.41 17.13 17.96 16.56 17.54 19.01 19.39 19.62 17.96 17.40
Fe2O3t 6.41 6.43 6.63 7.82 8.38 7.45 7.50 7.74 7.69 7.69 7.68 9.53
MnO 0.13 0.14 0.14 0.14 0.15 0.14 0.14 0.15 0.15 0.15 0.14 0.16
MgO 2.90 2.99 2.97 5.00 5.33 5.16 4.73 4.43 4.47 3.26 3.74 6.01
CaO 7.39 7.27 7.54 9.05 9.20 8.99 8.50 4.36 6.65 8.15 8.07 10.18
Na2O 2.97 2.96 2.90 2.48 2.35 2.42 2.50 1.69 2.21 2.88 2.70 2.37
K2O 1.46 1.45 1.56 1.54 1.37 1.65 1.64 1.34 1.12 1.14 1.89 1.41
P2O5 0.18 0.18 0.19 0.24 0.15 0.26 0.24 0.24 0.24 0.20 0.28 0.26
LOI 0.40 0.64 0.97 0.34 1.15 2.23 0.99 10.37 5.92 0.93 0.78 0.55
Total 100.91 101.00 99.54 100.47 100.82 101.52 100.77 99.80 100.47 101.19 100.76 100.65
Mg# 47.3 47.9 47.0 55.9 55.8 57.8 55.5 53.1 53.5 45.6 49.1 55.5
Sc (ppm) 19 20 20 34 38 37 33 32 35 23 29 40
V 183 187 179 249 274 246 246 249 248 208 231 144
Cr 16.0 13.5 12.1 82.5 60.8 95.6 61.4 46.6 58.6 12.9 17.3 64.6
Co 14.3 14.7 14.0 24.5 26.7 23.6 23.0 21.4 20.9 17.9 20.7 29.8
Ni 9.1 7.1 6.7 17.6 18.3 18.8 16.0 12.6 13.6 6.3 12.2 27.0
Cu 58.4 39.5 46.8 75.5 101 78.2 107 50.2 49.8 62.4 98.2 175
Zn 68.9 68.8 65.4 71.2 81.6 67.7 69.3 73.6 71.7 83.8 72.4 88.8
Ga 16.9 16.7 16.1 15.7 15.0 15.0 15.8 17.7 17.3 18.2 15.8 19.6
Rb 54.2 55.8 59.1 68.4 46.7 75.9 70.8 37.1 22.7 41.1 67.7 58.7
Sr 343 360 365 431 456 440 430 181 319 375 460 419
Y 13.4 14.3 13.1 14.2 15.9 13.9 13.8 15.1 11.0 18.2 15.0 20.7
Zr 61 59 63 59 63 51 62 69 67 67 70 76
Nb 3.4 3.5 3.7 2.9 3.0 3.0 3.1 4.0 4.2 2.6 3.7 0.4
Cs 3.2 3.3 5.1 3.9 4.1 3.8 5.4 1.9 3.9 2.7 2.6 3.6
Ba 411 407 415 365 386 376 420 426 431 345 463 410
La 11.3 12.9 12.5 11.9 13.2 12.7 12.9 13.6 10.9 12.5 14.8 17.5
Ce 23.6 26.0 24.7 24.1 24.2 23.6 25.2 28.1 21.5 25.5 27.9 38.1
Pr 2.8 3.2 2.9 2.9 3.1 2.9 3.1 3.5 2.6 3.2 3.6 4.9
Nd 10.9 12.5 11.3 11.9 12.5 11.7 11.8 13.7 10.3 13.2 14.4 20.8
Sm 2.4 2.6 2.3 2.5 2.6 2.4 2.5 2.9 2.1 3.0 3.0 4.5
Eu 0.79 0.84 0.73 0.82 0.89 0.81 0.83 0.92 0.68 0.98 0.95 1.47
Gd 2.8 2.9 2.7 3.0 3.2 2.7 2.9 3.2 2.4 3.4 3.3 5.0
Tb 0.4 0.5 0.4 0.5 0.5 0.4 0.4 0.5 0.4 0.5 0.5 0.7
Dy 2.9 3.0 2.6 2.9 3.2 2.8 2.8 3.2 2.4 3.5 3.1 4.5
Ho 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.7 0.5 0.7 0.6 0.9
Er 1.9 2.0 1.8 2.0 2.0 1.8 1.9 2.1 1.6 2.4 1.9 2.6
Tm 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.4
Yb 1.7 1.8 1.6 1.7 1.8 1.6 1.7 1.8 1.4 2.1 1.6 1.9
Lu 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3
Hf 1.8 1.8 1.7 1.7 1.6 1.6 1.8 2.0 1.9 1.8 1.8 2.2
Ta 0.2 0.2 0.2 0.3 0.2 0.2 0.3 0.3 0.3 0.2 0.2 0.7
Th 5.6 6.0 5.9 6.1 6.0 6.0 7.2 8.7 4.8 4.3 5.8 6.3
U 1.6 1.9 1.7 4.8 1.7 1.8 2.2 2.5 2.2 1.1 1.6 1.6
(La/Yb)N 4.8 5.1 5.6 5.0 5.3 5.7 5.4 5.4 5.6 4.3 6.6 6.6
Eu/Eu* 0.93 0.93 0.89 0.91 0.94 0.97 0.94 0.92 0.92 0.93 0.92 0.94

Sample
SDC-1
m.v. (30) SDC-1 r.v. DNC-1a m.v. DNC-1a r.v. GXR-1 m.v. GXR-1 r.v.

166
duplicate

BIR-1
m.v. (39) BIR-1 r.v.

SiO2 (wt%) 65.73 65.8 59.87 47.75 47.96
TiO2 0.99 1.01 0.52 0.96 0.96
Al2O3 15.89 15.8 18.85 15.42 15.5
Fe2O3t 6.76 6.32 6.40 11.16 11.3
MnO 0.11 0.13 0.17 0.175
MgO 1.64 1.69 2.91 9.59 9.70
CaO 1.43 1.40 7.38 13.22 13.3
Na2O 2.04 2.02 2.97 1.73 1.82

(Continued )
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enriched, with La/YbN ratios between 4.3 and 6.6 and Eu/
Eu* values between 0.89 and 0.97 (Figure 4b, d, f).

Sr-Nd isotope geochemistry

Reported 40A/39Ar and 40K/39Ar date ages from the volca-
nic rocks of the TTVG range from 0.2 to 1.5 Ma (Wang
et al. 2004). We chose the youngest age (i.e. 200 ka) to
calculate the initial Sr-Nd isotope ratios due to the relative
consistency between 40Ar-39Ar and 40K-39Ar dates; how-
ever, we noted that calculating the maximum age range
represents an insignificant difference in the value. All rock
types have similar initial 87Sr/86Sr values (ISr = 0.70414–
0.70488). Much like ISr values, initial

143Nd/144Nd ratios
for the TTVG rocks are relatively restricted and range from

0.51275 to 0.51279, which corresponds to εNd(T) values of
+2.2 to +3.1 using a CHUR value of 0.512639 (Figure 5).

Discussion

Intra-continental origin of the tholeiite basalt

The basaltic rocks from the NTVZ, including rocks from
the TTVG, were extensively studied by Wang et al.
(2004), who concluded that the basaltic rocks were gener-
ated by mixing between asthenospheric mantle melts and
enriched, garnet-bearing subcontinental lithospheric man-
tle (SCLM) melts within a post-collisional extensional
environment, with inconsequential contamination from
crustal sources at ≤2 Ma. The SCLM end-member source

Table 2. (Continued).

Sample
SDC-1
m.v. (30) SDC-1 r.v. DNC-1a m.v. DNC-1a r.v. GXR-1 m.v. GXR-1 r.v.

166
duplicate

BIR-1
m.v. (39) BIR-1 r.v.

K2O 3.22 3.28 1.47 0.03 0.03
P2O5 0.14 0.16 0.18 0.02 0.21
LOI 1.56 0.40 −0.28
Total 99.51 101.09 99.78
Mg#
Sc (ppm) 16 17 31 31 <1 1.58 19
V 72 102 148 148 76 80 185
Cr 48.9 64 202 270 13.7 12.0 15.7
Co 17.1 18.0 57.1 57.0 7.6 8.2 14.4
Ni 33.9 38.0 271 247 38 41 11
Cu 28 30 95.2 100 1090 1110 59.9
Zn 108 103 73.2 70.0 814 760 68.7
Ga 21.3 21.0 9.8 13.8 17.0
Rb 95.2 127 2.7 14.0 55.6
Sr 165 180 137 144 276 275 341
Y 16.2 18.0 27.9 32.0 13.3
Zr 45 290 35 38 20 38 60
Nb 6.2 21 0.7 0.8 3.4
Cs 3.8 4.0 2.62 3.00 3.2
Ba 575 630 104 118 626 750 417
La 38.2 42.0 3.7 3.6 7.0 7.5 11.1
Ce 84.8 93.0 13.9 17.0 23.4
Pr 2.8
Nd 37.7 40.0 4.9 5.2 8.0 18.0 10.8
Sm 7.4 8.2 2.7 2.7 2.4
Eu 1.62 1.70 0.61 0.59 0.64 0.69 0.79
Gd 7.8 7.0 4.4 4.2 2.8
Tb 1.1 1.2 0.8 0.83 0.4
Dy 6.8 6.7 5.3 4.3 2.8
Ho 1.4 1.5 0.6
Er 4.1 4.1 1.9
Tm 0.60 0.65 0.4 0.43 0.3
Yb 3.2 4.0 2.0 2.0 2.2 1.9 1.7
Lu 0.3 0.28 0.3
Hf 1.0 8.3 0.2 0.96 1.8
Ta 0.3 1.2 0.2
Th 12.3 12.0 3.6 2.44 5.4
U 2.7 3.1 32.5 34.9 1.5

Notes: LOI = loss on ignition; Mg# = [Mg2+/(Mg2+ + Fe2+)]*100; N = normalized to chrondite values of Sun and McDonough (1989); Eu/Eu* = [2*EuN/
(SmN + GdN)]. m.v. = measured value, r.v. = recommended value.
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was probably affected by subduction-related metasoma-
tism within the old Ryukyu arc (i.e. ≥2.6 Ma) prior to
the opening of the Okinawa trough because the Sr-Nd-Pb
isotopes and low Ce/Pb ratios (i.e. <8) of the basalts are
more depleted than would be expected from sediment
contamination alone (Ayers 1998; Chung et al. 2001;
Wang et al. 2004). The mixing proportion of the melt
from the SCLM to the asthenospheric mantle melt is
estimated to be between 20 and 30% for the basalts from
TTVG and the neighbouring Kuanyinshan volcanic group.
The basalts from TTVG and Kuanyinhsan are thought to
contain the highest proportion of SCLM-derived melts
within NTVG, which may be related to the fact that the
volcanic edifices formed on top of the basement rocks of
Taiwan rather than within the Ryukyu arc (Figure 1).

There is one basalt sample (i.e. 309) in this study from
TTVG and it is chemically similar to the TTVG data pre-
sented by Wang et al. (2004). The data show the basaltic
rocks from the TTVG to be compositionally similar to tho-
leiitic, within-plate continental basalts (Figure 6). The precise
petrogenetic origin may be debated but the geochemical
evidence indicates that these basalts are more similar to
those found at within-plate settings than at island-arc set-
tings. The Nb-Ta depletion observed in the primitive mantle
normalized incompatible element plot and the moderately
depleted Nd isotopes (i.e. εNd(T) = +2.7) are consistent with
the model proposed by Wang et al. (2004).

Mantle origin of the basaltic andesites

The basaltic andesites are calc-alkaline, have moderate to
high Mg# (46–58), and are considered to be derived either
from basalt by fractional crystallization or by direct partial
melting of an enriched SCLM mixed with asthenosphere-
derived melts (Lo 1982; Wang et al. 2004). The major
element plots show that there is a compositional trend

from the basalts through the basaltic andesites to the
andesites and may be supportive of the fractionation
hypothesis. The most distinctive trend is seen on the
plots of TiO2 vs. Fe2O3t or SiO2, where there is a notice-
able inflection just as the bulk composition changes from
basalt to basaltic andesite (Figures 7 and 8a). However, the
compositional trend may not indicate fractional crystal-
lization and could be an artefact of partial melting with
or without crustal contamination.

In order to test the fractional crystallization hypothesis
we applied thermodynamic modelling using the petrological
software MELTS (Ghiorso and Sack 1995; Smith and
Asimow 2005). The MELTS program allows the user to
test different fractionation models using a fixed starting
composition within the SiO2-TiO2-Al2O3-Fe2O3-Cr2O3-
FeO-MnO-MgO-CaO-Na2O-K2O-P2O5-H2O system, initial
pressure (bars), water content (wt%), and relative oxidation
state (ΑO2). Models were run using starting compositions
equal to the TTVG basalt, pressure range of 0.1−5 kbar,
oxidation conditions between FMQ −2 and FMQ +3, and
water contents between saturation and anhydrous. None of
the possible combinations of the parental magma composi-
tion or conditions could reproduce the observed basaltic
andesite composition; in particular the TiO2 content of the
resultant models is always too high for the given SiO2 con-
tent. Furthermore, some of the basaltic andesites have higher
Mg# but the same εNd(T) values as the basalts, implying that
the former cannot be derived from the same magma batch.
Therefore it is unlikely that the basaltic andesites are derived
by fractional crystallization of a basaltic parental magma.

Silicic magmas can be generated directly from the mantle
providing that it has been hydrated and/or reacted with silicic
melts from subducted crust to form pyroxenite (Rapp et al.
1999; Straub et al. 2008, 2011). The silicic magmas can
range in composition from basaltic andesite to dacite and
commonly have high Mg# (>50), Sr/Y ≤ 33, and Gd/Yb < 3,

Table 3. Whole-rock Sr and Nd isotope data for Tatun volcanic group rocks.

Sample Rock
Rb

(ppm)
Sr

(ppm)

87Rb/
86Sr

87Sr/
86Sr 2σm ISr

Sm
(ppm)

Nd
(ppm)

147Sm/
144Nd

143Nd/
144Nd 2σm εNd(T)

f (Sm/
Nd)

TDM-1
(Ma)

166 Andesite 54.2 343 0.457 0.70468 17 0.70468 2.4 10.9 0.1331 0.51275 6 +2.2 −0.32 757
190 Andesite 55.8 360 0.448 0.70489 14 0.70488 2.6 12.5 0.1257 0.51275 6 +2.3 −0.36 688
T-160 Andesite 2.3 11.3 0.1231 0.51275 7 +2.2 −0.37 674
227 B-A 68.4 431 0.459 0.70424 9 0.70424 2.5 11.9 0.1270 0.51279 6 +3.1 −0.35 625
230 B-A 46.7 456 0.296 0.70417 11 0.70416 2.6 12.5 0.1257 0.51278 6 +2.7 −0.36 644
229 B-A 75.9 440 0.499 0.70414 12 0.70414 2.5 11.8 0.1281 0.51278 5 +2.7 −0.35 670
224 B-A 70.8 430 0.476 0.70423 9 0.70423 2.5 11.8 0.1281 0.51277 6 +2.6 −0.35 679
223a B-A 37.1 181 0.593 0.70433 9 0.70433 2.9 13.7 0.1280 0.51275 5 +2.3 −0.35 705
T-223 B-A 22.7 319 0.206 0.70444 11 0.70444 2.1 10.3 0.1233 0.51276 6 +2.3 −0.37 663
T-210 B-A 41.1 375 3.170 0.70475 13 0.70475 3.0 13.2 0.1374 0.51275 6 +2.2 −0.30 800
249 B-A 67.7 460 0.426 0.70442 12 0.70442 3.0 14.4 0.1260 0.51275 6 +2.2 −0.36 697
T-309 Basalt 58.7 419 0.405 0.70445 14 0.70445 4.5 20.8 0.1308 0.51278 6 +2.7 −0.34 688

Notes: B-A, basaltic andesite. Rb, Sr, Sm and Nd concentrations were obtained by ICP-MS and precisions better than ±2%. The results of isotopic
measurements for Sr and Nd reference materials are NBS-987 (Sr) = 0.710248 ± 3 (2σm). JMC (Nd) = 0.511813 ± 10 (2σm). f(Sm/Nd) is defined as
((147Sm/144Nd)/0.1967-1). εNd(T) is calculated using an approximate equation of εNd(T) = εNd(0)-Q*f*T, in which Q = 25.1 Ga−1, f = f(Sm/Nd), and T age
= 200 ka. TDM–1 = (1/λ)*ln[1 + ((143Nd/144Nd)m–0.51315)/((

147Sm/144Nd)m–0.2137)]; λ = 0.00654 Ga−1.
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with Nd and He isotopes more similar to MORB than
enriched (i.e. crust, subducted sediment) sources as well as

high Ni olivine (Sobolev et al. 2005; Straub et al. 2008,
2011). The TTVG basaltic andesites have Sr/Y values <33
(Sr/Y = 12–32) and Gd/Yb ratios <3 (Gd/Yb = 1.6–2.6), but
Mg# ranges from 44 to 57 and Nd isotopes are between
0.51275 and 0.51279. The high-Mg# basaltic andesites are,
in some cases, more primitive than the basalts from the same
edifice. The highest-Mg# rocks may be direct partial melts
from a mantle source whereas the lower-Mg# rocks may
have experienced some fractionation of mafic silicate miner-
als (i.e. clinopyroxene) prior to emplacement (Wang et al.
2002). Additionally, LILE enrichment and Nb-Ta depletion
are observedwithin the basalts and basaltic andesites, and the
fact that both rock types have similar isotope compositions
suggests the basaltic andesites are derived from the same
isotopic reservoir as the basalts; however, they may be from
different mantle lithologies.

It is possible that during the pre-extensional subduction
environment, the SCLM beneath Taiwan was enriched by
silicic fluids derived from the downgoing slab and created
pyroxenite-rich regions within the mantle. These pyroxe-
nite-rich regions could be a source of the basaltic andesites
(Straub et al. 2011). The proposed model of basalt genesis
described by Wang et al. (2004) suggests that astheno-
spheric melts are injected into the enriched SCLM as the
Okinawa Trough opens. Melts derived by mixing between
the pyroxenite-rich and asthenospheric mantles may be able
to produce the basaltic andesites, whereas the ambient
SCLM and asthenospheric melts produced the basalts. The
lower TiO2 concentration of the basaltic andesites in com-
parison with some of the basalts may be related to the
hydrated/silicified nature of the pyroxenite regions and the
expansion of the stability field of Ti-rich accessory minerals
such as titanite and rutile (Hellman and Green 1979; Green
1981; Tatsumi 1989). We suggest that the ambient SCLM
was affected less by widespread hydration and silicification
and therefore would not have permitted stabilization of Ti-
bearing minerals, thus allowing for the generation of
higher-Ti and lower-silica melts (i.e. sample 309).

Fractionation (and assimilation) origin of andesite from
basaltic andesite

The andesites from the TTVG are considered to be derived
by fractional crystallization of a more mafic parental
magma, but beyond Harker diagrams there is limited robust
evidence for their origin (Lo 1982; Wang et al. 2004). We
apply MELTS modelling using one of the most primitive
basaltic andesites (i.e. 230) as the parental magma starting
composition. The relative oxidation status of the parental
magma is constrained by measurements from volcanic
fluids within rocks from Tatun (Ohba et al. 2010). The
results of Ohba et al. (2010) show that relative oxidation
status ranges from relatively reducing to relatively oxidiz-
ing. The fluids indicative of a reducing environment were
characterized as having intimate interaction with the crust
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Figure 3. Classification of the Tatun volcanic group rocks. (a)
Total alkalies (Na2O + K2O wt%) vs. SiO2 (wt%) normalized
to 100% (BAS et al. 1986). (b) Discrimination of the
tholeiitic basalts from the calc-alkaline basaltic andesites and
andesites (Miyashiro 1974). (c) Classification of andesitic
rocks (Gill 1981). Additional data from Wang et al. (2004).
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and a long residency time whereas the presence of rela-
tively oxidizing fluids is more indicative of a MORB origin,
and thus we chose an oxidation status that is more oxidizing
(i.e. FMQ +1). The remaining parameters (i.e. initial
water content and pressure) were determined by trial and
error. The model that produced the best results was water
saturated (i.e. H2O ≈ 2.5%) at a pressure equal to 750 bars
(i.e. ~2 km depth). The conditions are geologically reason-
able given that there are currently emissions of volcanic
gases (i.e. H2S and SO2) and active hot springs within
the Yangmingshan national park area of the TTVG (Lee
et al. 2005).

The shallow-pressure model calculations show that oli-
vine (Fo82) first appears on the solidus at a temperature of
1105°C, followed by diopside-augite at 1085°C. As soon as
clinopyroxene starts to crystallize the olivine stops crystal-
lizing until the temperature reaches 1055°C, just before (i.e.
1060°C) plagioclase (An84) and at the same temperature (i.e.
1065°C) that apatite begins to crystallize. The next mineral to
crystallize is Fe-Ti-rich spinel at 1050°C. The crystallizing
mineral assemblage remains stable until 1045°C, when oli-
vine (Fo78) stops crystallizing and orthopyroxene starts. The
bulk composition similar to most of the andesites at Tatun is
reached at ~1030°C after ~32% crystallization of the parental
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magma. The fractionating mineral assemblage at 1030°C
is orthopyroxene, clinopyroxene, plagioclase (An79), spi-
nel, and apatite. The anhydrous modelled liquid evolution
curves are plotted in Figure 8. In nearly all cases the
modelled curves pass immediately through or in close
proximity to the measured compositions of the andesites
from this study and those previously reported. The only
element that is not well replicated in the modelled curves
is MnO. However, Mn has no effect on the liquid line of
descent because it does not partition into the major rock-
forming minerals in this system. Although there is inher-
ent uncertainty in the precise starting composition and
initial magmatic conditions, the modelled results support
the fractionation hypothesis that the andesites very likely
formed by shallow (~2 km), hydrous crystal fractionation
of a basaltic andesite parental composition.

Crustal contamination may play a role in genesis of the
andesites because the relationship between MgO and the ISr
values indicates a negative correlation for the rock suite at
Tatun (Figure 9). It is possible that the source is isotopically
heterogeneous given that it was likely affected by mixing
between the SCLM and the asthenosphere. However, the
initial 143Nd/144Nd ratios do not vary substantially (143Nd/
144Ndi = 0.51275–0.51279), suggesting they may not be as
sensitive to crustal assimilation as the ISr values. If we
consider that the Nd isotopes are less sensitive to crustal
assimilation than the Sr isotopes and that there is some
source heterogeneity, then it is reasonable to conclude that
samples with the same Nd isotope composition and differ-
ing Sr isotope composition are reflecting differences in
crustal contamination rather than source heterogeneity. If
that is the case then isotope-mixing calculations indicate
that ≤2% crustal contamination is needed, assuming a crus-
tal component similar to the Cenozoic metasedimentary
rocks in the region (i.e. ISr = 0.72030; Sr = 95 ppm), to
explain the isotope variation between the parental basaltic
andesite (i.e. ISr = 0.70443; 143Nd/144Ndi = 0.51275) and
the daughter andesitic magmas (i.e. ISr = 0.70488; 143Nd/
144Ndi = 0.51275) (Lan et al. 2002). Therefore we suggest
that crustal contamination likely occurred but that it was a
relatively insignificant petrochemical process during gen-
esis of the andesites.

Relationship between TTVG and Kuanyinshan volcano

The results of petrological modelling indicate that the
TTVG andesitic rocks are likely derived by fractional
crystallization of basaltic andesite magma. Less than
5 km to the southeast of TTVG is the Kuanyinshan
(KYS) volcano. KYS is currently considered a separate
volcanic system from TTVG and there have been few, if
any, suggestions that they are directly related. The KYS
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Figure 6. Tectono-magmatic discrimination diagram of Pearce
and Norry (1979) of basalts from the Tatun volcanic group.
Additional data from Wang et al. (2004).
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1986; Hart et al. 1992; Campbell 2007). Additional data from
Wang et al. (2004).
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edifice is a composite volcano mainly composed of three
successive lava flows and agglomerates and consists of a
lowermost clinopyroxene andesite lava flow, a middle
two-pyroxene andesite lava flow, and an upper
hypersthene hornblende andesite lava flow (Chen and
Hwang 1982; Hwang and Lo 1986). Basalt is relatively
less abundant and only outcrops to the southeast of the

volcano. The volcanic activity in this area was dated by
two different methods, 40K/39Ar and fission-track, and
yielded ages between 0.2 and 1.1 Ma (Juang and Chen
1989; Wang 1989). Chen (1982) described most of the
volcanic rocks as porphyritic with phenocrysts consisting
of zoned plagioclase, olivine, augite, hypersthene, amphi-
bole, and biotite, and proposed that the KYS andesites
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were likely derived from basalts through fractionation of
an amphibole ± plagioclase ± magnetite assemblage;
whereas Hwang and Lo (1986) suggested that there are
three differentiation trends with different fractionates con-
sisting of amphibole, plagioclase, or magnetite. Crystal
fractionation was supported by the trace element distribu-
tion described by Chen (1990). Wang et al. (2004) pointed
out that the nascent KYS high-K calc-alkaline/shoshonitic
basalt is more enriched with LILEs and LREEs among the
NTVZ volcanics and originated from a low degree of
partial melting from asthenoshperic mantle mixed with a
higher proportion of metasomatized SCLM.

Because the volcanic rocks at KYS and TTVG have
very similar bulk compositions and their petrogenetic
models are also very similar, we propose that both vol-
canic groups are tapping the same mantle system (Figures
3, 5, 6, 7, 8). Figure 10 shows a possible scenario for the
development of the KYS-TTVG system. The first stage is
the injection of mafic magmas into the crust directly from
the source. Some of the mafic magmas may directly erupt
to produce the basaltic lavas, whereas other magma
batches reach neutral buoyancy and form small magma
chambers (not shown). The basaltic andesite magmas
may erupt directly from the mantle source or fractionate
in shallow magma chambers to produce the andesitic
magmas. Because of the compositional similarity of the
basalts between the two volcanic systems it is very likely
that the magmas originate from the same source. Our
proposed petrogenetic model is based on the close spatial
associations and geochemical similarities between TTVG
and KYS but it does not confirm that the two volcanic
edifices are tapping the same magma chamber, merely
that they originated from the same mantle source. Further
geophysical investigations may be able to delineate the
presence and possible distribution of crustal-level magma
chambers in the region and help provide structural
constraints.

Implications for the Tatun volcanic group

Co-genesis of the basalt and basaltic andesite-andesite has
important implications for the development of the NTVZ
and circum-Pacific andesites. The basalts from the TTVG
are continental tholeiites that were likely derived by mix-
ing of SCLM melts and asthenospheric melts in an exten-
sional environment and not related to an island-arc
tectonic system, but rather a back-arc/post-collisional set-
ting (Wang et al. 2004). Unlike the eastern portion of the
NTVZ, the western portion is exclusively continental in
nature and therefore the magmas erupted within thicker
crust and had an opportunity to interact with the continen-
tal crust (Chen 1965). Consequently the likelihood that
shallow (i.e. ~2 km) crustal magma chambers would
develop is increased. The fact that there are only a few
basaltic flows within the predominantly andesitic volcanic
system could be related to the basaltic magmas stalling in
the crust prior to eruption. Furthermore if the andesitic
rocks are the result of differentiation of the basaltic ande-
site magmas, then only the residual liquids would be
expected to erupt.

In comparison with other regions (i.e. Japan, Cascades,
Aleutians) of the circum-Pacific volcanic zone, the Tatun
andesites may be unique in the sense that they were not
generated within the confines of a subduction zone and
were rather formed by fractionation of mafic melts from a
mixed SCLM-asthenopsheric mantle source within a ten-
sional setting (Chung et al. 2001; Wang et al. 2004). The
negative Nb-Ta anomaly observed in the rocks is likely due
to the modification of the subcontinental lithospheric
mantle during pre-Quaternary subduction along the east
Eurasian margin. The relatively complicated tectonic set-
ting (i.e. trench-arc-back-arc basin-oblique arc-continent
collision) may favour the formation of an extensional set-
ting, or at least decompression, due to the rapid rate of
mountain building and collapse found in Taiwan (Teng
1996). Thus the andesites of the TTVG are likely an

Kuanyinshan
volcanic system

Rift basin

Upper Crust

Lower Crust

Basalt Basaltic-andesite Andesite

Tatun
volcanic system

SCLMPyroxenite

Figure 10. Conceptual cogenetic tectonic model of rocks from
the Tatun volcanic group and Kuanyinshan group.
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example of shallow-level fractionation of mafic magma
under water-saturated and relatively oxidizing conditions
(Osborn 1959; Zellmer et al. 2005; Shellnutt and Zellmer
2010).

Conclusions

The basalt, basaltic andesites, and andesites of the TTVG
represent a co-genetic suite of volcanic rocks formed within
an extensional tectonic setting. Back-arc extension asso-
ciated with the opening of the Okinawa trough is contin-
uous into the northern portion of Taiwan. The extensional
setting was sufficient to induce partial melting of subduc-
tion-modified SCLM and allow mixing with upwelling
asthenopheric melts to produce the basalt and basaltic ande-
site of the TTVG. The basaltic andesites are likely derived
directly by partial melting of a pyroxenetic mantle source,
whereas the andesites are derived by fractionation of the
basaltic andesites at relatively low pressure (750 bar), water
saturation (H2O = 2.5 wt%), and oxidizing conditions
(ΑO2 = FMQ +1). The chemical similarity of the TTVG
volcanic rocks with the neighbouring Kuanyinshan volca-
nic rocks suggests that they may share a common petrogen-
eitc history. The results of this study indicate that some
andesitic rocks are generated by shallow-level crystal frac-
tionation of a mafic parental magma within continental
portions of back-arc/post-collisional settings.
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