To blast, or not to blast? – That is the Question

Alexander Belousov¹, Barry Voight² and Marina Belousova¹

1- Institute of Marine Geology & Geophysics, Yuzno-Sakhalinsk, Russia;
Institute of Volcanology & Seismology, Petropavlovsk-Kamchatsky, Russia.
2. Penn State University, University Park, USA

Harimkotan 1933

Bezymianny 1956

 Active volcanoes frequently collapse
 5 sector collapses of volcanoes in the 20th century

Collapse of an active volcano commonly provokes strong explosive eruption

QUESTIONS

- What are the main scenarios of failure-related eruptions?
- What factors determine the scenario?
- What factors lead to directed blast?

Sources of information

Observational dataStratigraphy

Pre-failure activity

Intensive seismicity, and in some cases deformations and volcanic activity indicate intrusion of magma into the edifice

Common trigger of collapse: intrusion of viscous magma Climactic stage

 Edifice failure
 Strong explosive magmatic eruption

First type of stratigraphy deposits of failure-related eruptions

Pyroclastic flow and fallout deposits

Debris avalanche deposit

Examples: Harimkotan 2000 C14 and 1933

Shiveluch 1964

Failure
 Phreatic explosion
 Plinian eruption
 Deposition of PFs

Shiveluch 1964

Time gap between failure and onset of magmatic eruption was large (13 min).

Air-wave and volcanic tremor energy during November 12, 1964 eruption of Shiveluch (with modifications after Tokarev 1967)

Shiveluch

500 BP

1600 BP

Harimkotan

1933

2000 BP

Second type of stratigraphy deposits of failure-related eruptions

Pyroclastic flow and fallout deposits

Directed blast deposit

Debris avalanche deposit

Pre-climactic ash

Examples: Bezymianny 1956; Mount St.Helens 1980; Soufriere Hills Montserrat 1996

Bezymianny 1956

- 1. Sector collapse
- 2. Directed blast
- 3. Vertical eruption(Deposition of PFs)

Bezymianny 1956 Stratigraphic relations and character of contact between debris avalanche and blast deposits indicate that their deposition was closely spaced in time.

Time gap between failure and magmatic eruption was short

Two types of stratigraphy deposits of failure-related eruptions

Examples: Harimkotan 1933, Shiveluch 1964

Examples: Bezymianny 1956, Mount St.Helens 1980, Soufriere Hills Montserrat 1996

Basic scenarios failure-related eruptions

Sector collapse
 Vertical eruption
 (Plinian/Vulcanian)

Examples: Harimkotan 1933, Shiveluch 1964

Pre-climactic (pre-failure)
 volcanic activity
 Sector collapse
 Directed blast
 Vertical eruption
 (Plinian/Vulcanian)

Examples: Bezymianny 1956, Mount St.Helens 1980, Soufriere Hills Montserrat 1996

Differences

Scenario 1

1. <u>No</u> pre-collapse volcanic activity.

- 2. No blast.
- 3. Long time span between failure and magmatic eruption.

Scenario 2

 Pre-collapse volcanic activity
 Blast.
 Short time span between failure and magmatic eruption.

Position of magma

in the moment of failure

Conclusions

- Two basic scenarios of failure-related eruptions: Shiveluch type (no blast) and Bezymianny type (blast).
- To blast or not to blast depends on a level of magma in the moment of failure: shallow – blast, deep – no blast.
- Interplay between edifice stability and destabilizing effect of the intruding magma determine the scenario.